1932

Abstract

An effective mass of charge carriers that is significantly larger than the mass of a free electron develops at low temperatures in certain lanthanide- and actinide-based metals, including those formed with plutonium, owing to strong electron-electron interactions. This heavy-fermion mass is reflected in a substantially enhanced electronic coefficient of specific heat γ, which for elemental Pu is much larger than that of normal metals. By our definition, there are twelve Pu-based heavy-fermion compounds, most discovered recently, whose basic properties are known and discussed. Relative to other examples, these Pu-based heavy-fermion systems are particularly complex owing in part to the possible simultaneous presence of multiple, nearly degenerate 5fn configurations. This complexity poses significant opportunities as well as challenges, including understanding the origin of unconventional superconductivity in some of these materials.

[Erratum, Closure]

An erratum has been published for this article:
Plutonium-Based Heavy-Fermion Systems
Loading

Article metrics loading...

/content/journals/10.1146/annurev-conmatphys-031214-014508
2015-03-10
2024-06-02
Loading full text...

Full text loading...

/deliver/fulltext/conmatphys/6/1/annurev-conmatphys-031214-014508.html?itemId=/content/journals/10.1146/annurev-conmatphys-031214-014508&mimeType=html&fmt=ahah

Literature Cited

  1. Hecker S. 2000. Los Alamos Sci. 26:16–23 [Google Scholar]
  2. Albers RC. 2001. Nature 410:759–61 [Google Scholar]
  3. Hill HH, Lindsay JDG, White RW, Asprey LB, Struebing VO, Matthias BT. 1971. Physica 55:615–21 [Google Scholar]
  4. Anderson PW. 1961. Phys. Rev. 124:41–53 [Google Scholar]
  5. Schrieffer JR, Wolff PA. 1966. Phys. Rev. 149:491–92 [Google Scholar]
  6. Savrasov SY, Kotliar G, Abrahams E. 2001. Nature 410:793–95 [Google Scholar]
  7. Booth CH, Jiang Y, Wang DL, Mitchell JN, Tobash PH et al. 2012. Proc. Natl. Acad. Sci. USA 109:10205–9 [Google Scholar]
  8. Arko AJ, Joyce JJ, Morales L, Wills J, Lashley J et al. 2000. Phys. Rev. B 62:1773–79 [Google Scholar]
  9. Zhu J-X, Albers RC, Haule K, Kotliar G, Wills JM. 2013. Nat. Commun. 4:3644 [Google Scholar]
  10. Lawrence JM, Riseborough PS, Parks RD. 1981. Rep. Prog. Phys. 44:1–84 [Google Scholar]
  11. Fisk Z, Hess DW, Pethick CJ, Pines D, Smith JL et al. 1988. Science 239:33–42 [Google Scholar]
  12. Clark DL, Hecker SS, Jarvinen GD, Neu MP. 2006. The Chemistry of the Actinides and Transactinides Morss LR, Edelstein NM, Fuger J. 813–1264 New York: Springer [Google Scholar]
  13. Stewart GR, Fisk Z, Smith JL, Willis JO, Wire MS. 1984. Phys. Rev. B 30:1249–52 [Google Scholar]
  14. Brodsky MB, Friddle RJ. 1975. Proceedings of the 20th Annual Conference on Magnetism and Magnetic Materials (1974) Graham CD, Lander GH, Rhyne JJ. 353 San Francisco: Am. Inst. Phys. [Google Scholar]
  15. Ott HR, Rudigier H, Fisk Z, Smith JL. 1983. Phys. Rev. Lett. 50:1595–98 [Google Scholar]
  16. Stewart GR, Elliott RO. 1985. Phys. Rev. B 31:4669–71 [Google Scholar]
  17. Arko AJ, Fradin FY, Brodsky MB. 1973. Phys. Rev. B 8:4104–18 [Google Scholar]
  18. Moore KT, van der Laan G. 2009. Rev. Mod. Phys. 81:235–98 [Google Scholar]
  19. Fradin FY, Arko AJ, Brodsky MB. 1974. AIP Conference Proceedings Graham CD, Rhyne JJ. 192 San Francisco: Am. Inst. Phys. [Google Scholar]
  20. Kadowaki K, Woods SB. 1986. Solid State Commun. 58:507–9 [Google Scholar]
  21. Bauer ED, Tobash PH, Mitchell JN, Sarrao JL. 2012. Philos. Mag. 92:2466–91 [Google Scholar]
  22. Chudo H, Koutroulakis G, Yasuoka H, Bauer ED, Tobash PH et al. 2014. J. Phys. Condens. Matter 26:036001 [Google Scholar]
  23. Haga Y, Bauer ED, Tobash PH, Mitchell JN, Ayala-Valenzuela O et al. 2013. J. Korean Phys. Soc. 63:380–82 [Google Scholar]
  24. Wang CCJ, Jones MD, Zhu J-X. 2013. Phys. Rev. B 88:125106 [Google Scholar]
  25. Boulet P, Colineau E, Wastin F, Javorský P, Griveau JC et al. 2005. Phys. Rev. B 72:064438 [Google Scholar]
  26. Bauer ED, Tobash PH, Mitchell JN, Kennison JA, Ronning F et al. 2011. J. Phys. Condens. Matter 23:094223 [Google Scholar]
  27. Thompson JD, Fisk Z. 2012. J. Phys. Soc. Jpn. 81:011002 [Google Scholar]
  28. Sarrao JL, Morales LA, Thompson JD, Scott BL, Stewart GR et al. 2002. Nature 420:297–99 [Google Scholar]
  29. Wastin F, Boulet P, Rebizant J, Colineau E, Lander GH. 2003. J. Phys. Condens. Matter 15:S2279 [Google Scholar]
  30. Javorský P, Colineau E, Wastin F, Jutier F, Griveau JC et al. 2007. Phys. Rev. B 75:184501 [Google Scholar]
  31. Bauer ED, Altarawneh MM, Tobash PH, Gofryk K, Ayala-Valenzuela OE et al. 2012. J. Phys. Condens. Matter 24:052206 [Google Scholar]
  32. Haga Y, Aoki D, Matsuda TD, Nakajima K, Arai Y et al. 2005. J. Phys. Soc. Jpn. 74:1698–701 [Google Scholar]
  33. Orlando TP, McNiff EJ, Foner S, Beasley MR. 1979. Phys. Rev. B 19:4545–61 [Google Scholar]
  34. Werthamer NR, Helfand E, Hohenberg PC. 1966. Phys. Rev. 147:295–302 [Google Scholar]
  35. Bianchi A, Movshovich R, Capan C, Pagliuso PG, Sarrao JL. 2003. Phys. Rev. Lett. 91:187004 [Google Scholar]
/content/journals/10.1146/annurev-conmatphys-031214-014508
Loading
/content/journals/10.1146/annurev-conmatphys-031214-014508
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error